
Java PDF (Limited Copy)

Harvey M. Deitel

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Java Summary
Comprehensive Java Programming: Learn, Practice, and Master

Essential Concepts.

Written by New York Central Park Page Turners Books Club

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

About the book

The Deitels' renowned "How to Program" series serves as a comprehensive

guide to Java programming, catering to both beginners and intermediate

learners. This latest edition is updated to align with the Java 2 Platform

Standard Edition (J2SE) 1.5, incorporating essential contemporary features

such as autoboxing, which automates the conversion between primitives and

their corresponding wrapper classes; enumerations, which provide a

type-safe way to define a set of named constants; and enhanced for loops,

designed for simplified iteration over collections and arrays.

The book employs a Live-Code Approach, presenting programming

concepts through complete, functional examples. This method not only

highlights syntax but also includes input/output dialogs that facilitate a more

intuitive understanding of programming practices. Each chapter is enriched

with practical advice on best practices, common pitfalls, and strategies for

performance optimization, helping learners build robust coding habits.

Additionally, the inclusion of a CD-ROM provides essential tools and

resources, making the book an indispensable reference for anyone keen to

master the Java language. Overall, the Deitels' guide not only teaches Java

programming but also mentors readers in the art of coding, ensuring they are

well-equipped to tackle real-world programming challenges.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

About the author

Harvey M. Deitel is a distinguished educator, author, and software

developer, well-respected for his pioneering contributions to computer

science education over several decades. He is best known for co-authoring

influential textbooks, particularly "Java: How to Program," which has

become essential for students and professionals in the field. His innovative

teaching strategies focus on making complex programming concepts

accessible, earning him widespread acclaim in academic circles.

In addition to his writing, Deitel is a co-founder of Deitel & Associates, a

company dedicated to corporate training and software development. This

venture underscores his commitment to enhancing technology education and

ensuring that both aspiring and experienced developers stay updated with

industry trends. Through his work, Deitel has significantly influenced the

landscape of programming education, helping to cultivate a generation of

adept developers in the constantly evolving realm of software engineering.

His efforts reflect a broader mission to make programming more

approachable and to prepare learners for the challenges of modern

technological demands.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

https://ohjcz-alternate.app.link/scWO9aOrzTb

Summary Content List

Chapter 1: Contents

Chapter 2: Before You Begin

Chapter 3: 1 Introduction to Android

Chapter 4: 2 Android Market and App Business Issues

Chapter 5: 3 Welcome App: Dive-Into® Eclipse and the ADT Plugin

Chapter 6: 4 Tip Calculator App: Building an Android App with Java

Chapter 7: 5 Favorite Twitter® Searches App: SharedPreferences, Buttons,

Nested Layouts, Intents, AlertDialogs, Inflating XML Layouts and the

Manifest File

Chapter 8: 6 Flag Quiz Game App: Assets, AssetManager, Tweened

Animations, Handler, Menus and Logging Error Messages

Chapter 9: 7 Cannon Game App: Listening for Touches and Gestures,

Manual Frame-By-Frame Animation, Graphics, Sound, Threading,

SurfaceView and SurfaceHolder

Chapter 10: 8 SpotOn Game App: Property Animation,

ViewPropertyAnimator, AnimatorListener, Thread-Safe Collections, Default

SharedPreferences for an Activity

Chapter 11: 9 Doodlz App: Two-Dimensional Graphics, SensorManager,

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Multitouch Events and Toasts

Chapter 12: 10 Address Book App: ListActivity, AdapterViews, Adapters,

Multiple Activities, SQLite, GUI Styles, Menu Resources and MenuInflater

Chapter 13: 11 Route Tracker App: Google Maps API, GPS,

LocationManager, MapActivity, MapView and Overlay

Chapter 14: 12 Slideshow App: Gallery and Media Library Access, Built-In

Content Providers, MediaPlayer, Image Transitions, Custom ListActivity

Layouts and the View-Holder Pattern

Chapter 15: 13 Enhanced Slideshow App: Serializing Data, Taking Pictures

with the Camera and Playing Video in a VideoView

Chapter 16: 14 Weather Viewer App: Web Services, JSON, Fragment,

ListFragment, DialogFragment, ActionBar, Tabbed Navigation, App

Widgets, Broadcast Intents and BroadcastReceivers

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 1 Summary: Contents

Summary of the Book "Java" by Harvey M. Deitel

Preface and Introduction

The book sets the stage for an in-depth exploration of Java programming,

particularly focusing on Android development. It outlines its structure,

emphasizing a hands-on approach to learning. The introduction provides

context on Android as an operating system, detailing its evolution through

various versions, including Froyo, Gingerbread, Honeycomb, and Ice Cream

Sandwich, while also introducing the Software Development Kit (SDK)

essential for building applications.

Chapter Highlights

1. Introduction to Android

This chapter introduces the Android platform, tracing its historical

development and highlighting key features. It discusses the Android Market

(now known as Google Play), the SDK, and fundamental concepts in app

development, establishing a foundation for future lessons.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

2. Android Market and App Business Issues

Expanding on the previous chapter, this section explores best practices in

app development, covering important business aspects like registration,

effective pricing strategies, and monetization techniques. It also addresses

marketing tactics to promote applications in a competitive landscape.

3. Welcome App

A practical introduction to coding begins with setting up the Eclipse

Integrated Development Environment (IDE) and creating a simple Android

application. This chapter familiarizes readers with the tools and frameworks

necessary for development.

4. Tip Calculator App

Building on foundational skills, this chapter walks readers through

programming a functional tip calculator. It emphasizes user interface design

and coding principles, reinforcing the connection between GUI and backend

logic.

5. Favorite Twitter Searches App

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Utilizing SharedPreferences for data storage, this chapter guides readers in

creating an app that saves and retrieves user preferences, enhancing

interactivity through well-implemented UI components.

6. Flag Quiz Game App

Readers design a quiz game that reinforces concepts of asset management

and introduces basic animation. This chapter illustrates how to engage users

through game mechanics and visual enhancements.

7. Cannon Game App

In this chapter, touch input handling is explored as readers develop a game

that manages graphics and sound. This involves understanding user

interactions and improving gameplay responsiveness.

8. SpotOn Game App

Focusing on property animation, this chapter teaches how to create more

dynamic and visually appealing interactive experiences, a key skill for

modern application design.

9. Doodlz App

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Here, readers learn to handle multitouch events in a creative drawing

application. This chapter emphasizes graphics programming, allowing users

to express creativity while understanding advanced input handling

techniques.

10. Address Book App

This chapter dives into managing data across multiple activities and SQLite

databases, showcasing how to integrate various user interface components to

build a functional and efficient contact management tool.

11. Route Tracker App

Utilizing the Google Maps API, this section explains how to use GPS

services for real-time location tracking. This practical application showcases

the power of integrating location-based services in Android apps.

12. Slideshow App

Readers explore media management as they create an application that

accesses galleries, enabling image display within the app—a foundational

skill for many types of applications.

13. Enhanced Slideshow App

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Building upon the previous chapter, this section enhances the slideshow app

by integrating camera functionality and enabling video playback, adding

layers to presentation capabilities.

14. Weather Viewer App

This chapter introduces web services and JSON handling, focusing on

creating complex interactions with app fragments and action bars for a

seamless user experience when displaying weather data.

Additional Chapters

The book further explores practical applications, including voice and audio

recording, advanced address book functionalities, and even introduces 3D

rendering techniques for more complex app designs.

Wrap-Up

Each chapter concludes with summaries designed to reinforce the concepts

covered and solidify understanding. Collectively, the book serves as a

comprehensive resource for both beginners and seasoned developers seeking

to master Java and Android app development, blending theoretical

knowledge with practical skills.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 2 Summary: Before You Begin

Summary of "Before You Begin"

This introductory section serves as a crucial guide for readers looking to set

up their computers to begin developing Android applications using the book

"Java" by Harvey M. Deitel.

Font and Naming Conventions help differentiate various components,

 with on-screen elements presented in a sans-serif bold Helvetica font (for

instance, “Project menu”) while Java code appears in a sans-serif Lucida

font (like “public” and “class Activity”).

Software and Hardware Requirements outline the necessity for a

 computer system running on Windows®, Linux, or Mac OS X, with

specific development software including the Java SE 6 Software

Development Kit, Eclipse 3.6.2 IDE, Android SDK versions 2.2, 2.3.3, and

3.x, as well as the ADT Plugin for Eclipse.

To begin development, Installing the Java Development Kit (JDK) is esse

ntial, particularly JDK version 6. Detailed installation instructions are

provided on the official website.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Next, Installing the Eclipse IDE, which is favored for Android

 development, involves downloading the IDE package for Java Developers

and configuring it to utilize JDK 6.

After setting up the IDE, readers will need to focus on Installing the Android

 SDK by downloading it, extracting its content, and remembering that

 the Android platform must be downloaded separately.

Integration of the Android SDK tools into Eclipse is achieved through the A

DT Plugin for Eclipse. Installation instructions and troubleshooting tips

 are also included to assist users.

The next step, Installing the Android Platform(s), requires following

 specific procedures to configure Eclipse and utilizing the Android SDK

Manager for selecting and installing necessary platform packages.

To facilitate app testing across varying devices, Creating Android Virtual

 Devices (AVDs) is crucial. This involves using the Android Emulator to

 establish AVDs that emulate device specifications.

Optional steps include Setting Up an Android Device for Development, w

hich might require a Windows USB driver alongside device-specific drivers

to execute apps on real devices.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Lastly, readers are made aware of (Optional) Other IDEs for Developing

 Android Apps, emphasizing that while Eclipse is popular, alternative

 IDEs and command-line tools are also available for development.

To enhance the learning experience, Obtaining the Code Examples is highl

ighted. Readers can access code examples by registering for a free account

on the designated website, allowing them to follow along with the book’s

teachings in practical Android app development.

This section effectively equips new learners with the foundational tools and

configurations needed to embark on Android app development through the

guidance of the book.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 3 Summary: 1 Introduction to Android

Chapter 1 Summary: Introduction to Android

1.1 Objectives

This chapter provides a comprehensive overview of Android, covering its

historical development, including the evolution of the Android SDK, and the

Android Market for app distribution. It also introduces fundamental concepts

of object-oriented programming and key software tools used in Android app

development such as the Android SDK, Java SDK, and the Eclipse IDE.

Additionally, it highlights essential documentation and resources for

developers, culminating in a practical introduction to a test application that

enables users to draw on the screen.

1.2 Android Overview

Launch in 2008, Android rapidly gained traction in the mobile market,

particularly in North America. Developed originally by Android, Inc. and

later acquired by Google, it operates under the auspices of the Open Handset

Alliance. Its open-source model encourages developers to access and modify

the source code, contributing to its continual improvement.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

1.3 Android Versions

The chapter examines the progression of Android versions, beginning with

2.2 (Froyo) and ending with 3.0 (Honeycomb). Each version brings notable

enhancements, particularly in user interface design and overall performance,

demonstrating Android’s adaptive evolution in response to user and

developer needs.

1.4 Features of Android 2.2 (Froyo)

Froyo introduced significant updates including superior performance, better

memory management, and features designed for enhanced security, such as

password options. New developer tools were also made available,

facilitating easier integrations, underscored by the introduction of Cloud to

Device Messaging (C2DM).

1.5 Features of Android 2.3 (Gingerbread)

Gingerbread brought a redesigned keyboard and improvements in

multitasking and camera accessibility. It also provided developers with more

robust communication APIs, enabling better app performance and

management.

1.6 Features of Android 3.0 (Honeycomb)

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

With a clear focus on tablet optimization, Honeycomb enhanced the user

interface and functionality tailored for larger screens, marking a pivotal shift

in Android's design philosophy to accommodate diverse devices.

1.7 App Distribution via Android Market

This section explains the app acquisition process through the Android

Market, outlining the associated developer fees and marketing strategies

such as providing free 'lite' versions to encourage user engagement.

1.8 Android Packaging

Android packaging is elaborated upon, detailing how developers can

leverage pre-defined class structures to streamline app development,

maximizing efficiency.

1.9 Android Software Development Kit (SDK)

The Android SDK is a powerhouse for app creation, equipped with

necessary tools optimized for use with Eclipse IDE and emulators for user

testing, illustrating the SDK's crucial role in development.

1.10 Object Technology Refresher

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

This part serves as an introduction to object-oriented programming

fundamentals, explaining the relationships between classes, objects,

methods, and attributes, while emphasizing core concepts like encapsulation

and inheritance essential to software development.

1.11 Test-Driving the Doodlz App

The chapter concludes with a guide to setting up and testing the Doodlz app,

illustrating practical experience through the Android emulator. This

hands-on approach solidifies understanding of the development tools and

processes.

1.12 Deitel Resources

A list of supplementary resources provided by Deitel for those seeking to

deepen their knowledge of Android development is presented here.

1.13 Additional Android Development Resources

This section curates a variety of websites, articles, forums, and video

channels that serve as valuable tools for Android developers, offering best

practices and community support.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

1.14 Wrap-Up

The chapter concludes by recapping essential topics, emphasizing the

historical context of Android, the key features across versions, foundational

Java development skills, the app testing process, and preparation for app

submission to the Android Market.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 4: 2 Android Market and App Business Issues

Summary of "Android Market and App Business Issues"

Objectives Overview:

This chapter aims to guide developers through the essential aspects of

creating and distributing Android applications. It covers the key

characteristics of successful apps, user interface design, registration

procedures for Android Market, various monetization strategies, and insights

into broader app distribution channels.

1. Introduction:

The chapter sets the stage for Android app development, emphasizing the

importance of user interface (UI) guidelines, registering apps for the

marketplace, and effective monetization strategies. These foundational steps

are critical for any developer looking to succeed in the competitive

landscape of mobile applications.

2. Building Great Android Apps:

Successful Android apps share distinct characteristics: they are innovative,

regularly updated, functional, and user-friendly. While gaming apps should

entertain and challenge users, utility apps must enhance productivity and

provide reliable information. This balance of entertainment and practicality

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

is vital for user engagement.

3. Android Best Practices:

Developers should adhere to best practices that ensure their apps are

compatible with various devices and screens. Following UI guidelines

contributes to the app’s performance and responsiveness, enhancing the

overall user experience.

4. Registering at Android Market:

To distribute apps on Android Market, developers must pay a one-time

registration fee and comply with content policies, allowing them to upload

apps without prior approval. This streamlined process supports quick entry

into the market.

5. Setting Up a Google Checkout Merchant Account:

For those wishing to sell their apps, establishing a Google Checkout

Merchant Account is essential. This involves submitting personal and

financial information to facilitate transactions within the marketplace.

6. AndroidManifest.xml File:

The AndroidManifest.xml file is crucial for app functionality and visibility

within the market. It details app permissions and features, ensuring proper

operation on user devices.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

7. Preparing Apps for Publication:

Before launching apps, developers should adhere to a checklist that includes

testing, adding icons and labels, managing version control, and digitally

signing their apps to enhance security and integrity.

8. Uploading Apps to Android Market:

The upload process consists of submitting the APK file along with relevant

screenshots, icons, and descriptions, effectively presenting the app to

potential users.

9. Other Android App Marketplaces:

In addition to Android Market, developers have the option to distribute their

apps through alternative app stores or directly via their websites, provided

they comply with user information policies.

10. Pricing Your App: Free or Fee:

Choosing whether to price an app or offer it for free involves analyzing

market competition and exploring monetization strategies, such as in-app

purchases or advertisements, to maximize revenue potential.

11. Monetizing Apps with In-App Advertising:

Incorporating advertisements in free apps presents a significant revenue

opportunity. This approach allows developers to offer apps at no cost while

generating income through ad impressions and clicks.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

12. Monetizing Apps: Using In-App Billing:

This strategy enables developers to sell virtual goods and additional content

within their apps, with successful examples underscoring the effectiveness

of in-app billing as a revenue model.

13. Launching the Market App from Within Your App:

Integrating features that direct users to explore more apps from within their

current app can enhance user retention and introduce them to complementary

applications.

14. Managing Your Apps in Android Market:

Utilizing the Developer Console, developers can oversee their app’s

performance, track reviews, and manage updates effectively to maintain user

satisfaction.

15. Marketing Your App:

Effective app marketing strategies can include leveraging social media

platforms, email campaigns, and engaging with reviewers to build credibility

and attract new users.

16. Other Popular App Platforms:

Expanding one's audience is possible by porting Android apps to other

popular platforms, such as iPhone and BlackBerry, allowing developers to

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

access diverse markets.

17. Android Developer Documentation:

The chapter provides resources and links to essential documentation for

further reference, supporting ongoing learning and development in app

creation.

18. Android Humor:

A lighthearted exploration of Android culture through humor offers a fun

interlude while reinforcing community engagement among developers and

users.

19. Wrap-Up:

The chapter concludes by summarizing the critical steps and considerations

for publishing apps in the Android ecosystem. It also points to future

chapters that will delve into practical application development, setting a

clear path for aspiring developers.

Through this comprehensive overview, readers gain valuable insights into

the Android app development process, equipping them with the knowledge

necessary to navigate the Android Market successfully.

https://ohjcz-alternate.app.link/scWO9aOrzTb

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 5 Summary: 3 Welcome App: Dive-Into®
Eclipse and the ADT Plugin

Welcome App Overview: Summary

This chapter serves as a comprehensive introduction to building a simple

"Welcome" app using the Eclipse Integrated Development Environment

(IDE) with the Android Development Tools (ADT) Plugin. The primary aim

is to guide users through the foundational steps of Android app development

without the need for coding, focusing instead on visual design and

application structure.

Objectives

The key objectives outlined are:

- Gain proficiency with the Eclipse IDE tailored for Android development.

- Create and manage a new Android project.

- Utilize the ADT Plugin to visually design the graphical user interface

(GUI).

- Adjust properties of GUI components.

- Develop and run a straightforward Android app on an Android Virtual

Device (AVD).

1. Introduction

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

The chapter begins with an overview of the "Welcome" app, which

prominently features a message and two images for visual appeal. This

project serves as a hands-on introduction for beginners to familiarize

themselves with app development processes.

2. Technologies Overview

Here, the reader learns to navigate the Eclipse platform, covering essential

tasks such as creating new projects and the utilization of ImageViews and

TextViews, which are fundamental components for displaying images and

text in the app's interface. This section also emphasizes the importance of

editing the properties of these GUI components to achieve the desired

design.

3. Eclipse IDE

Eclipse is established as a pivotal tool for managing Android development,

requiring the initial setup of the Java SE Development Kit, Android SDK,

and the ADT Plugin. Upon launching Eclipse for the first time, users will

encounter the Welcome tab, introducing them to the array of features

available in the IDE.

4. Creating a New Project

To kickstart the app development process, users are guided through

navigating the menu to create a new project by selecting "File > New >

Project" and opting for an Android Project. They will need to input project

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

details such as the project name, contents, and build target, along with the

application name and package name, adhering to Java naming conventions.

5. Building the Welcome App’s GUI

The ADT’s Visual Layout Editor comes into play, allowing users to create

and adjust the main.xml layout file used for the app. The section describes

how to choose layout types such as RelativeLayout and LinearLayout and

provides a drag-and-drop interface to build the user interface visually.

6. Examining the main.xml File

Readers learn the significance of XML in app development, examining how

the GUI is represented structurally in the main.xml file. The discussion

includes an exploration of the attributes defining the Visual Layout,

including texts and images, contributing to the final design.

7. Running the Welcome App

Once the GUI is constructed, the chapter advises on running the app within

an AVD, enabling users to test its functionality and interact with their

creation in a simulated Android environment.

8. Wrap-Up

In summary, this chapter highlighted the essential functionalities of the

Eclipse IDE, guiding users through the creation of a basic Android app while

emphasizing the visual design aspects and customization of component

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

properties. The subsequent chapter promises to shift focus towards Java

programming, essential for enhancing and expanding Android app

functionalities.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 6 Summary: 4 Tip Calculator App: Building an
Android App with Java

Tip Calculator App Summary

Objectives

This chapter guides the reader through the development of a Tip Calculator

app, focusing on designing its graphical user interface (GUI) with a

TableLayout, utilizing Eclipse's ADT Plugin, and implementing Java

object-oriented programming (OOP) principles.

1. Introduction

The Tip Calculator app is designed to assist users in calculating tips based

on a restaurant bill. It allows users to input the bill amount and calculates the

tips and total costs according to common percentages (10%, 15%, 20%) as

well as a customizable percentage selected via a SeekBar.

2. Test-Driving the Tip Calculator App

To familiarize you with the functioning of the app, import and run the Tip

Calculator project in Eclipse. Key functionalities include entering a bill

amount and seeing real-time updates for tips and totals, as well as adjusting

the tip percentage using the SeekBar.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

3. Technologies Overview

The application leverages key Java OOP concepts—such as classes,

interfaces, and inheritance—along with GUI components like EditTexts for

user input and SeekBars for adjustable settings.

4. Building the App's GUI

4.1 TableLayout Introduction

A TableLayout is employed to organize the app's GUI components

systematically in rows and columns, enhancing the visual structure and ease

of navigation.

4.2 Creating the Project

Start by creating the project and configuring the XML layout to integrate the

TableLayout, ensuring that it meets the requirements for component

organization.

4.3 Adding Components

Components are added to designated TableRows in a logical order, ensuring

that each component has the appropriate ID and text settings to function

correctly.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

4.4 Customizing Components

Components are further tailored to improve user experience through

modifications in text alignment, padding, and size adjustments, ultimately

ensuring clarity and usability.

4.5 Final XML Markup

The chapter concludes with the full XML code for the app's layout,

highlighting various attributes that define its visual presentation.

4.6 strings.xml

An overview of string resources used within the app, enabling easy updates

and localization.

5. Adding Functionality to the App

In this section, methods are defined to perform calculations for tips and total

amounts based on user input. Event listeners for EditText and SeekBar

components are established to enhance interactivity, enabling the app to

respond dynamically to user actions and maintaining state across

configuration changes, such as screen rotations.

6. Wrap-Up

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

This chapter detailed the process of creating an interactive Android app

using Java, addressing both the design of the GUI and the implementation of

underlying functionality. It also introduced concepts of lifecycle

management to ensure consistent performance. Future chapters will delve

into more advanced functionalities, such as utilizing collections in app

development, building upon the foundational work established in this

chapter.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 7 Summary: 5 Favorite Twitter® Searches App:
SharedPreferences, Buttons, Nested Layouts, Intents,
AlertDialogs, Inflating XML Layouts and the Manifest
File

Chapter 7: Summary

Objectives

In this chapter, readers delve into the development of the Favorite Twitter

Searches app, a utility designed for users to efficiently store and access their

preferred Twitter search strings via customizable tags. This chapter

encompasses various facets of Android app development, including user

interactions through buttons, the utilization of a ScrollView for content

display, the dynamic creation of the graphical user interface (GUI) through

XML layout inflation, persistent data management via SharedPreferences,

user confirmation through AlertDialogs, and the launching of intents to

navigate to web pages.

Introduction

The Favorite Twitter Searches app enhances user experience by enabling

quick access to personalized Twitter searches, making it particularly useful

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

when managing multiple interests or topics without constantly re-entering

search terms.

Test-Driving the Favorite Twitter Searches App

The chapter illustrates how to execute and utilize the app in the Eclipse

Integrated Development Environment (IDE). It guides readers through the

process of adding and managing favorite searches, demonstrating the ease

with which users can edit or delete entries, ultimately showcasing the app’s

user-friendly functionality.

Technologies Overview

Key technological components utilized in the app include:

- EditText: for user input.

- ScrollView: for displaying a list of stored searches.

- Button: for executing actions like adding or removing searches.

- SharedPreferences: for managing key-value pairs of user data for

 persistence.

- Intents: for launching external web pages relevant to user searches.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

- LayoutInflater: for dynamically generating user interface elements.

- AlertDialog: for prompting users with confirmation messages on

 important actions.

Building the App’s GUI and Resource Files

The GUI design revolves around a TableLayout defined in XML, allowing

structured and responsive user interactions on different screen sizes. The

chapter emphasizes the steps required in creating project files and defining

the necessary XML attributes to facilitate a cohesive user experience.

Building the App

The app's core functionality resides in a single Activity responsible for

managing UI and app components. Critical processes include handling user

input through event listeners and managing the storage and retrieval of user

searches with SharedPreferences, ensuring that user data is reliably stored

across sessions.

AndroidManifest.xml

This section introduces the essential AndroidManifest.xml file, explaining

how it specifies the app’s package name, versioning details, activity

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

configurations, and crucial settings that influence the app's behavior, such as

suppressing the keyboard on launch.

Wrap-Up

Throughout this chapter, the development of the Favorite Twitter Searches

app is meticulously chronicled, emphasizing essential aspects of Android

development such as dynamic UI updates, effective persistent data

management, and user interaction responsiveness. By laying this

groundwork, the chapter prepares readers for future app development

ventures, hinting at the exciting prospect of creating a Flag Quiz Game app

in Chapter 6.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 8: 6 Flag Quiz Game App: Assets,
AssetManager, Tweened Animations, Handler, Menus and
Logging Error Messages

Chapter 6: Flag Quiz Game App

Objectives

In this chapter, you will explore the development of the Flag Quiz Game,

focusing on various key components essential for building interactive

Android applications. You will learn how to manage resources, manipulate

UI elements, and implement features that enhance user experience.

6.1 Introduction

The Flag Quiz Game app challenges users to recognize country flags

through a series of multiple-choice questions. Each quiz presents a flag

accompanied by three answer options, keeping track of the player's progress

and displaying the final results upon completion.

User Interaction Flow

- Correct Selection: When a user selects the right answer, the country

 name appears in green. After a brief pause, the app automatically loads a

new flag for the next question.

- Incorrect Selection: If the user chooses incorrectly, the app provides

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

 immediate feedback through an animated shake effect on the flag and

displays an "Incorrect!" message in red.

- Quiz Completion: At the end, players receive a summary of their total

 guesses and correct answer percentage displayed in an AlertDialog, with an

option available to restart the quiz.

Customizations

Users can personalize their gaming experience by choosing the number of

answer options—3, 6, or 9—and selecting specific geographical regions

from which the flags will be drawn. These options are accessible through the

app’s menu, allowing for greater engagement.

6.2 Test-Driving the Flag Quiz Game App

To run the app, follow straightforward steps to import the project into

Eclipse and launch it. This process verifies that the app functions as intended

and allows for immediate testing of features developed.

6.3 Technologies Overview

The foundation of the app is built on several key technologies:

- Flag images are stored in the assets folder and accessed through

AssetManager.

- A customizable menu allows users to adjust quiz settings.

- Actions are scheduled using a Handler, which manages delays in

displaying the next flag.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

- XML animations enhance the user experience by providing visual feedback

for incorrect answers.

- Logging is integrated using Android’s Log class, which aids in debugging

by tracking errors.

- Data structures like ArrayList and HashMap efficiently store and manage

the quiz content dynamically.

6.4 Building the App’s GUI and Resource Files

The app’s graphical user interface (GUI) is crafted using XML to organize

components clearly. The main layout, defined in `main.xml`, employs a

LinearLayout to arrange visual elements in a user-friendly manner. Resource

files, including colors.xml, dimen.xml, and strings.xml, are utilized to

standardize UI properties and facilitate the management of string resources.

6.5 Building the App

The core functionality of the app resides within the FlagQuizGame class,

which includes:

- Instance Variables: Key variables that track game state and interface

 elements.

- onCreate Method: This initializes the activity, sets up the GUI, and

 starts the quiz.

- resetQuiz Method: This prepares the game for a new session, resetting

 all variables and states.

- loadNextFlag Method: Exposes the next flag and dynamically

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

 generates answer choices.

- submitGuess Method: Processes user guesses, updates scores

 accordingly, and navigates the quiz flow.

6.6 AndroidManifest.xml

Essential configurations for the app are documented in the

AndroidManifest.xml file, ensuring that themes and screen orientations

enhance the overall user experience.

6.7 Wrap-Up

In this chapter, you've learned the fundamentals of creating the Flag Quiz

Game, touching on critical Android development concepts such as resource

management, dynamic UI creation, and error logging. In the next chapter,

you will embark on a new project— the Cannon Game, which will introduce

more complex elements including multithreading and event handling, further

expanding your development skills.

https://ohjcz-alternate.app.link/scWO9aOrzTb

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 9 Summary: 7 Cannon Game App: Listening for
Touches and Gestures, Manual Frame-By-Frame
Animation, Graphics, Sound, Threading, SurfaceView
and SurfaceHolder

Cannon Game App Overview

In this chapter, the reader is guided through the process of creating a

dynamic and engaging Cannon Game app. The game's primary objective is

to hit a seven-piece target within a strict 10-second time limit. Players

control the cannon by tapping the screen to aim and double-tapping to shoot.

Successfully hitting segments of the target grants additional time, while

inadvertently hitting a blocker reduces the time limit. The game ends with an

AlertDialog that displays the player's success or failure.

Objectives

The main goals for this chapter include the development of a user-friendly

game app, leveraging a custom SurfaceView subclass for enhanced graphics,

and implementing robust touch event handling along with gesture detection.

Additionally, sound integration is achieved through the utilization of

SoundPool and AudioManager, while improving the lifecycle management

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

of the Activity ensures a smooth user experience.

Introduction

Players engage by aiming their cannon to strike targets while avoiding

blockers that could detract from their score. Hitting the target rewards

players by extending their time limit, whereas hitting a blocker brings

penalties. The game's conclusion is marked by an AlertDialog, providing

clear feedback on the player’s performance.

Test-Driving the Cannon Game App

To ensure users can easily access the Cannon Game, this section provides

clear instructions for importing and launching the app within the Eclipse

development environment, making it simple for developers to get started.

Technologies Overview

As the development process unfolds, various technologies come into play:

- String Resources: Manage localization efficiently with formatting in

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

 strings.xml, enhancing the game's accessibility.

- Custom View: Create personalized views, such as CannonView, by

 extending the SurfaceView class to cater to specific game needs.

- Sound Management: Implement sound effects using the SoundPool

 class, enhancing the immersive experience.

- Touch Events: Handle user interactions through the overridden

 onTouchEvent method of the Activity.

- Gesture Recognition: Introduce advanced touch inputs with

 GestureDetector, allowing for intuitive gameplay.

Building the App's GUI and Resource Files

This section outlines essential steps for setting up the project, including the

creation of necessary XML layouts. Sound resources are efficiently

organized within the res/raw folder, facilitating easy access during

development.

Implementing Game Logic

To create a coherent gaming experience, the chapter delves into the

foundational classes that form the game's structure. Key components

include:

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

- CannonView Class: This class manages game elements alongside user

 input, serving as the interface between the player and the game world.

- Line Class: Represents the dynamic components of the game by

 establishing the start and endpoints of various elements.

- Game Loop Management: The game updates its state and graphics

 through a separate thread (CannonThread), ensuring consistent gameplay

across devices by synchronizing updates based on timestamps.

Animation and Graphics

To create visually appealing animations, the chapter explains how to manage

frame-by-frame animations through a separate thread. This method keeps the

user interface responsive, leveraging Canvas and Paint to animate game

elements seamlessly while maintaining high performance.

Wrap-Up

In conclusion, this chapter highlights the essential skills acquired while

developing the Cannon Game app, laying down a solid foundation for future

applications focused on leveraging Android's capabilities for game

development. The upcoming chapter will introduce the SpotOn game app,

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

which will explore property animation for moving images, further expanding

developers' knowledge in mobile game design.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 10 Summary: 8 SpotOn Game App: Property
Animation, ViewPropertyAnimator, AnimatorListener,
Thread-Safe Collections, Default SharedPreferences for
an Activity

Chapter 10: SpotOn Game App Summary

In this chapter, we delve into the development of *SpotOn*, a fast-paced

game app designed to test and improve the user's reflexes by requiring them

to tap on moving spots before they disappear. As players progress through

increasingly challenging levels, they earn points and must manage limited

lives, with penalties for missed touches that can lead to game over scenarios.

The chapter begins with a comprehensive guide on importing the *SpotOn*

project into the Eclipse development environment, ensuring that players can

easily engage with the app's core mechanics. The user interface is built using

a series of resource files, including essential layout configurations like

`main.xml`, `untouched.xml`, and `life.xml`, along with an updated

`AndroidManifest.xml` file. These components collectively create an

engaging gameplay experience.

A key feature of *SpotOn* is its animation framework, which utilizes the

property animation system introduced in Android 3.0. Unlike previous

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

methods, this system allows for seamless interaction during animations,

enriching the player's experience by ensuring that visual effects do not

interfere with gameplay.

The app's primary activity, codified in the `SpotOn` class, oversees the

initialization of views and lifecycle management. Meanwhile, the

`SpotOnView` subclass encapsulates the game’s internal logic, including the

core animations and user interactions.

Several important methods within `SpotOnView` facilitate the game’s

operation:

- The constructor establishes necessary game variables and resources.

- The `addNewSpot` method is responsible for creating and configuring new

spots on the screen, complete with animations.

- User interaction is captured through methods like `touchedSpot` and

`missedSpot`, which adjust scores based on player performance.

- Additional methods manage the overall game state, including resetting

scores and tracking lives.

In summary, this chapter illustrates how to harness property animations for

an interactive and fluid gaming experience, emphasizing the importance of

efficient resource management and responsive user input. These

foundational concepts will serve as a springboard for exploring more

advanced graphic capabilities in the upcoming chapter on the *Doodlz* app.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 11 Summary: 9 Doodlz App: Two-Dimensional
Graphics, SensorManager, Multitouch Events and Toasts

Chapter 9: Doodlz App - Two-Dimensional Graphics, SensorManager,

 Multitouch Events, and Toasts

Objectives

In this chapter, you will learn how to:

- Detect user touch events on the screen.

- Process simultaneous touches for enhanced drawing capabilities.

- Utilize SensorManager to implement screen-clearing gestures like shaking

the device.

- Ensure safe access to boolean states with AtomicBoolean.

- Customize drawing attributes such as color and width using Paint objects.

- Utilize Path objects to keep track of drawing workflows.

- Display short, user-friendly messages through Toast notifications.

9.1 Introduction

The Doodlz app turns any device screen into an interactive canvas where

users can paint using one or multiple fingers. This application allows for

color selection and line thickness adjustments through SeekBars, alongside

functionalities such as an eraser, screen-clearing options, and the ability to

save drawings. A fun feature includes the capability to clear the canvas by

simply shaking the device.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

9.2 Test-Driving the Doodlz App

While a prior section offered a practical test drive of the app, no further

hands-on testing is covered in this chapter.

9.3 Technologies Overview

Doodlz targets Android 3.0, designed to capitalize on its aesthetic

improvements. Key technologies and methodologies include:

- The SensorManager, crucial for detecting accelerometer events to clear the

screen when the device is shaken.

- Custom Dialogs for adjusting colors and line widths, providing a more

refined interface than standard AlertDialogs.

- AtomicBoolean, which facilitates concurrent access management for the

dialog states, ensuring safe operations during user interactions.

- The app's drawing features rely on Bitmap and Canvas classes to create

engaging graphics.

- Touch events are meticulously captured, enabling users to draw with

multiple fingers simultaneously.

9.4 Building the App’s GUI and Resource Files

This section guides you through constructing the essential resources and

layouts required for the app:

- 9.4.1 Creating the Project: Establish a new Android project named

 Doodlz, entering the prescribed configurations.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

- 9.4.2 AndroidManifest.xml: Ensure the target SDK is set to Android

 3.0, leveraging its enhanced features.

- 9.4.3 strings.xml: Define the string resources that the app will utilize.

- 9.4.4 main.xml: Integrate a custom DoodleView into the app layout for

 user interaction.

- 9.4.5 color_dialog.xml: Design a layout specifically for color selection.

- 9.4.6 width_dialog.xml: Establish a layout for users to select their

 desired line width.

9.5 Building the App

In this section, we detail the development of the core application classes:

- 9.5.1 Doodlz Subclass of Activity: This is the primary activity that

 manages menu options and responds to accelerometer inputs for

functionalities such as clearing the screen.

- 9.5.2 DoodleView Subclass of View: This class is responsible for

 capturing user touch inputs and executing the drawing logic on the screen.

9.6 Wrap-Up

In this chapter, you have gained skills in developing an interactive drawing

application by employing Android’s two-dimensional graphics capabilities,

touch event handling, sensor integration, and sound user interface design

principles.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Anticipate the next chapter, which will introduce the Address Book app,

focusing on effective contact management features.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 12: 10 Address Book App: ListActivity,
AdapterViews, Adapters, Multiple Activities, SQLite,
GUI Styles, Menu Resources and MenuInflater

Chapter 10: Address Book App

Objectives

This chapter focuses on teaching key Android development concepts,

including extending the ListActivity to create a default ListView,

implementing multiple Activity subclasses with explicit Intents, and

managing SQLite databases using the SQLiteOpenHelper class.

Additionally, it covers inserting, deleting, and querying data with the

SQLiteDatabase, displaying results with SimpleCursorAdapter and Cursor,

implementing multithreading for database operations, and defining GUI

styles via XML and MenuInflater.

10.1 Introduction

The Address Book app provides users with a straightforward interface for

viewing and managing contact details. It allows users to scroll through their

contacts, edit entries, and delete them when necessary. To ensure that contact

information is stored reliably over time, the app makes use of a database for

persistent storage.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

10.2 Test-Driving the Address Book App

After importing the project into the Eclipse IDE, users can navigate a

user-friendly menu that facilitates the addition, editing, and removal of

contacts. This menu utilizes standard Android GUI components, including

buttons and list views, which enhance the overall usability of the

application.

10.3 Technologies Overview

This section outlines the essential technologies powering the app:

- Manifest: The `AndroidManifest.xml` file is crucial as it declares each

 Activity within the app.

- Styles: GUI attributes are organized in XML to maintain consistency

 and ease of design.

- ListView: A dynamic list format that displays contacts, extended

 through Adapter classes for customization.

- Intents: These are used for navigating between Activities, facilitating

 communication within the app.

- SQLite: The chosen database engine for storing contact data,

 supported by utility classes for data management.

- AsyncTask: This class is instrumental for carrying out background

 operations, ensuring that the GUI remains responsive during database

transactions.

10.4 Building the GUI and Resource Files

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

This section highlights the critical aspects of creating the Address Book

app's resource files, including:

- Layouts for each Activity, defining the visual structure.

- Menu Resources that dictate the items available for user interaction.

10.5 Building the App

The app's architecture comprises four primary classes:

1. AddressBook: The main Activity housing the ListView of contacts.

2. ViewContact: An Activity that presents the details of a selected

 contact.

3. AddEditContact: This Activity enables users to input new contact

 information or modify existing entries.

4. DatabaseConnector: A utility class dedicated to all database

 operations necessary for managing contact records.

10.5.1 AddressBook Subclass of ListActivity

This subsection explains how to customize the AddressBook class,

overriding methods to effectively manage and display contacts within a

ListView by utilizing a CursorAdapter.

10.5.2 ViewContact Subclass of Activity

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Here, the focus is on displaying individual contact details and providing

users with options to either edit or delete the entries.

10.5.3 AddEditContact Subclass of Activity

This part discusses the mechanisms for adding new contacts as well as

editing existing ones, using user input captured through EditText fields.

10.5.4 DatabaseConnector Utility Class

The function of this utility class is examined, detailing how it supports

various SQLite database operations, including inserting, updating, and

removing contact records effectively.

10.6 Wrap-Up

In conclusion, this chapter encapsulates the development of the Address

Book app, reinforcing learning outcomes related to Activity management,

database operations, GUI design, and the use of multithreading. Readers are

set to delve into the next chapter, which will introduce the Route Tracker

app, emphasizing GPS functionalities to monitor user locations, thus

expanding their grasp of mobile app development.

https://ohjcz-alternate.app.link/scWO9aOrzTb

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 13 Summary: 11 Route Tracker App: Google
Maps API, GPS, LocationManager, MapActivity,
MapView and Overlay

Chapter 11: Route Tracker App

Objectives

In this chapter, you will learn how to develop and test the Route Tracker

app, which utilizes GPS location data to help users track their movements in

real time. You will explore how to integrate the Google Maps API for

displaying maps, acquire a unique API key, implement the LocationManager

to obtain position and bearing information, and manage device settings to

optimize the app's performance.

11.1 Introduction

The Route Tracker app is designed to allow users to monitor their location

and direction using an Android device. A simple toggle button enables users

to start and stop tracking, with visual feedback provided through changes in

text and graphics. The app features a MapView that displays the user's

journey, offering various styles, including standard map and satellite views.

Upon halting the tracking process, users receive a dialog box that reveals the

distance traveled and average speed.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

11.2 Test-Driving the Route Tracker App

To get started with the Route Tracker app, follow these initial steps:

- Importing the App: Learn how to import the app project into the

 Eclipse IDE to begin development.

- Obtaining a Google Maps API Key: Understand the process for

 generating a unique API key required for Google Maps functionality,

tailored to your development environment.

- Running the App on an Android Device: Access detailed instructions

 for testing the app on a physical device or utilizing the Android Virtual

Device (AVD) for simulation.

11.3 Technologies Overview

The Route Tracker app employs several key technologies:

- ToggleButton: This interface element allows users to toggle tracking on

 and off, reflecting the current state visually.

- MapActivity, MapView, and Overlay: These classes work together to

 render Google Maps and draw the user's route effectively.

- Location Data: The LocationManager system is utilized to capture

 real-time GPS coordinates and direction updates.

- PowerManager and WakeLock: These components keep the device

 awake during tracking sessions, preventing it from entering sleep mode.

- Display Class: This accesses the device's screen dimensions to ensure

 the map is appropriately scaled.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

11.4 Building the GUI and Resource Files

In the library setup for the Route Tracker project, important elements

include:

- Creating the Project: Establish the Route Tracker project while

 specifying build targets and necessary application details.

- AndroidManifest.xml: This file guides essential features of the app,

 addresses library dependencies, customizes the app theme, and requests

permissions needed for accessing location services.

- Route Tracker Layout: The XML layout file outlines the configuration

 for the ToggleButton and the FrameLayout that hosts the MapView.

11.5 Building the App

A look into the main components of the app reveals:

- Class Structure: The app comprises several key classes, including

 RouteTracker, BearingFrameLayout, and RouteOverlay.

- RouteTracker Class: This principal class manages app activities and

 interacts with the map interface.

- BearingFrameLayout Class: It focuses on the visual orientation and

 presentation of the MapView.

- RouteOverlay Class: Responsible for maintaining and visually

 representing the tracked route on the map.

11.6 Wrap-Up

The Route Tracker app provides a robust solution for real-time location

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

tracking using GPS technology and the Google Maps API. Essential features

include the ToggleButton for managing user input, efficient integration with

location services, and a comprehensive permissions framework. In the

forthcoming chapter, we will transition to building a Slideshow app that

incorporates multimedia, such as images and audio from the Android library.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 14 Summary: 12 Slideshow App: Gallery and
Media Library Access, Built-In Content Providers,
MediaPlayer, Image Transitions, Custom ListActivity
Layouts and the View-Holder Pattern

Chapter 14: Slideshow App

In this chapter, we explore the development of a Slideshow app, designed to

allow users to craft and control slideshows by incorporating images and

music from their devices. The application features a user-friendly main

screen that displays a list of slideshows, each showcasing a title and a

preview image. Users can select slideshows to play, edit, or delete them,

streamlining the management process.

Objectives Covered:

The chapter achieves several key objectives:

- Utilizing Intents and content providers for selecting images and music.

- Implementing launch Intents to return results back to the calling activity.

- Incorporating the MediaPlayer class for playing background music during

slideshows.

- Customizing ListActivity layouts and employing the ViewHolder pattern

to enhance performance.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

- Developing a custom GUI for AlertDialog, enabling the collection of user

information.

- Loading images as Bitmaps using BitmapFactory for efficient memory

management.

- Creating dynamic image transitions with TransitionDrawable effects.

Introduction:

The Slideshow app serves as a powerful tool for creating personalized visual

and auditory experiences. By leveraging existing media on the user's device,

the app facilitates a creative outlet that’s both fun and interactive.

Test-Driving the Slideshow App:

Users are guided through the process of importing the Slideshow project into

the Eclipse integrated development environment (IDE). The section includes

instructions for testing the app's functionalities and transferring necessary

media files to an Android Virtual Device (AVD), ensuring smooth operation

during development.

Technologies Overview:

The chapter delves into essential technologies that support the app's

functionality:

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

- Built-In Content Providers that facilitate data sharing across different

applications.

- Customization of AlertDialog for enhanced user input gathering.

- Creation of custom layouts for ListActivity, allowing for a more tailored

user interface.

- The use of startActivityForResult to handle result returns efficiently.

- The role of ArrayAdapter and its extensions in customizing layouts for

ListViews.

- Implementation of the ViewHolder pattern to improve ListView

performance.

- MediaPlayer for managing audio playback during slideshows.

- BitmapFactory for the efficient loading of images into memory.

- TransitionDrawable for creating smooth transitions between images.

Building the GUI and Resource Files:

Key steps in setting up the project’s structure are outlined, including:

- Organizing resource files and implementing standard Android icons.

- Adjustments to the AndroidManifest.xml for essential app configurations.

- Designing layouts tailored to ListView components to enhance user

interaction.

Building the App:

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

The chapter introduces several vital classes that shape the app's architecture:

- SlideshowInfo: This class encapsulates the data relevant to each

 slideshow.

- Slideshow: The main interface displaying and managing the various

 slideshows.

- SlideshowEditor: This component allows users to seamlessly add

 images and audio clips to their slideshows.

- SlideshowPlayer: Responsible for controlling the playback of

 slideshows, integrating both visual and audio elements.

Each class serves a unique purpose, ensuring the app operates smoothly

while adhering to best practices such as effective event handling and the

ViewHolder optimization for ListView performance.

Wrap-Up:

This chapter underscores the creation of an engaging Slideshow app by

tapping into Android’s content providers for data management, allowing for

user input customization, enhancing ListView interactions, and utilizing

audio playback capabilities. Moving forward, the next chapter will expand

on the functionalities of the Slideshow app, promising even greater user

experiences.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 15 Summary: 13 Enhanced Slideshow App:
Serializing Data, Taking Pictures with the Camera and
Playing Video in a VideoView

Enhanced Slideshow App

Objectives

This chapter outlines how to incorporate advanced features into the

Enhanced Slideshow app by enabling video selection, camera capture, and

slideshow management. Key elements include:

- Utilizing Intents for selecting videos from the media library.

- Capturing images with the device's rear camera.

- Displaying photos with color effects using SurfaceView and related

components.

- Playing videos via VideoView.

- Implementing Serializable objects for saving and loading slideshows.

1. Introduction

The Enhanced Slideshow app expands upon the original Slideshow app by

adding file processing and serialization capabilities. This allows users to

create memorable slideshows that can be saved and retrieved. Users can

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

capture new images or select videos, all while enjoying background music

during playback.

2. Test-Driving the Enhanced Slideshow App

To explore the functionalities of the Enhanced Slideshow app, users import

the project into Eclipse and run it on their Android devices. A guided

walkthrough enables the addition of videos and the creation of dynamic

slideshows.

3. Technologies Overview

- File Processing and Object Serialization: Utilizing Serializable objects

 allows the app to save slideshow data effectively. Functions such as

`writeObject` and `readObject` facilitate this process through Java's

ObjectOutputStream and ObjectInputStream.

- Camera Integration: The app utilizes the device camera to capture

 images that can be included in slideshows.

- Video Playback: With the VideoView class, users can select and

 integrate videos, enhancing the visual experience of the slideshow.

4. Building the GUI and Resource Files

This section emphasizes the modification of existing layouts and resource

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

files to integrate the new functionalities of video selection and camera

access, fostering a more interactive user experience.

5. Building the App

Several key classes are introduced to structure the app:

- MediaItem Class: Serves as a framework for both images and videos,

 implementing Serializable to facilitate easy saving and loading.

- SlideshowInfo Class: A data structure that retains relevant slideshow

 details while managing a list of MediaItems.

- Slideshow Class: The primary activity responsible for the slideshow's

 functionalities, including saving and loading instances.

- PictureTaker Class: Manages capturing photos and applying visual

 effects.

- SlideshowPlayer Class: Directs the display and playback of both

 images and videos within the slideshow.

6. Wrap-Up

In summary, this chapter provides a comprehensive look at employing Java

I/O for object serialization in storing slideshow data, integrating camera

functionalities for photo capture, and enabling video playback in slideshows.

The next chapter will shift focus to developing applications for tablets with

Android 3.x, as the exploration continues into the creation of a Weather

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Viewer app utilizing WeatherBug's web services.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

Chapter 16: 14 Weather Viewer App: Web Services,
JSON, Fragment, ListFragment, DialogFragment,
ActionBar, Tabbed Navigation, App Widgets, Broadcast
Intents and BroadcastReceivers

Chapter 16 Summary: Weather Viewer App

Objectives

The primary goal of this chapter is to guide the reader through the creation

of a Weather Viewer app tailored for Android 3.x tablets. Key tasks include

integrating WeatherBug® web services for real-time weather data, utilizing

Android’s JsonReader for data processing, employing Fragments for a

responsive user interface (UI), creating an interactive app widget, and

facilitating user city preference management through broadcasting changes.

Introduction

The Weather Viewer app is designed to provide users with current weather

conditions and a five-day forecast for selected cities, making it particularly

useful for weather enthusiasts. By leveraging WeatherBug®’s web services,

the app ensures that users receive accurate and up-to-date meteorological

data.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

App Components

1. User Interface

 - The app features a user-friendly ActionBar that allows easy navigation

between two main tabs: current weather conditions and the five-day forecast.

Users can personalize their experience by adding new cities or selecting a

preferred city through a simple dialog interface.

2. Fragment Utilization

 - The app employs Fragments to compartmentalize different sections of the

UI. For instance, a ListFragment is utilized for displaying a list of cities,

while other Fragment types manage individual weather forecasts, enhancing

the app's responsiveness and layout flexibility.

3. App Widget

 - A home screen widget is available, providing users with quick access to

current weather updates based on their preferred city without needing to

open the app fully. This feature enhances the app’s usability and keeps users

engaged.

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

4. Data Management

 - The app effectively manages user data by utilizing Android Framework

components, such as AsyncTask for executing background tasks and

SharedPreferences for storing user preferences conveniently.

Technologies Overview

This chapter emphasizes the critical role of Fragments, the ActionBar, and

JSON handling in the app's framework. It provides insights into managing

the Fragment lifecycle within Activities, ensuring an uninterrupted user

experience even when device orientations change.

Machine Instructions

To facilitate development, the app is tested using the Eclipse IDE, with a

step-by-step guide on importing project files and running the application.

Users are instructed on how to interact with the UI to alter settings and

display weather data, particularly with respect to managing city preferences

effectively.

Building the App

The app consists of various Java classes, each designed for specific

Scan to Download

https://ohjcz-alternate.app.link/scWO9aOrzTb

functionalities:

- WeatherViewerActivity: This serves as the main control center,

 managing UI flow and displaying weather data.

- Various Fragments: Each Fragment is responsible for different visual

 representations of weather data and city lists.

- Data Retrieval Classes: These classes are tasked with parsing JSON

 responses from the WeatherBug® API and facilitating smooth API

communication.

Conclusion

By combining multiple elements of the Android ecosystem, the Weather

Viewer app showcases a comprehensive design that emphasizes user

interaction through dynamic UI components and efficient data processing.

This structure not only makes the app functional and engaging but also

highlights key Android development practices.

https://ohjcz-alternate.app.link/scWO9aOrzTb

https://ohjcz-alternate.app.link/k44PHDLrzTb
https://ohjcz-alternate.app.link/DAJnHlMrzTb

